Error estimates for Krylov subspace approximations of matrix exponentials

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Error Bounds for the Krylov Subspace Methods for Computations of Matrix Exponentials

In this paper, we present new a posteriori and a priori error bounds for the Krylov subspace methods for computing e−τAv for a given τ > 0 and v ∈ Cn, where A is a large sparse nonHermitian matrix. The a priori error bounds relate the convergence to λmin( A+A∗ 2 ), λmax( A+A∗ 2 ) (the smallest and the largest eigenvalue of the Hermitian part of A), and |λmax(A−A 2 )| (the largest eigenvalue in ...

متن کامل

Comparing Leja and Krylov Approximations of Large Scale Matrix Exponentials

We have implemented a numerical code (ReLPM, Real Leja Points Method) for polynomial interpolation of the matrix exponential propagators exp (∆tA)v and φ(∆tA)v, φ(z) = (exp (z) − 1)/z. The ReLPM code is tested and compared with Krylov-based routines, on large scale sparse matrices arising from the spatial discretization of 2D and 3D advection-diffusion equations.

متن کامل

Analysis of Some Krylov Subspace Approximations to the Matrix Exponential Operator

In this note we present a theoretical analysis of some Krylov subspace approximations to the matrix exponential operation exp(A)v and establish a priori and a posteriori error estimates. Several such approximations are considered. The main idea of these techniques is to approximately project the exponential operator onto a small Krylov subspace and carry out the resulting small exponential matr...

متن کامل

Sharp Ritz Value Estimates for Restarted Krylov Subspace Iterations

Gradient iterations for the Rayleigh quotient are elemental methods for computing the smallest eigenvalues of a pair of symmetric and positive definite matrices. A considerable convergence acceleration can be achieved by preconditioning and by computing Rayleigh-Ritz approximations from subspaces of increasing dimensions. An example of the resulting Krylov subspace eigensolvers is the generaliz...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Computational and Applied Mathematics

سال: 1996

ISSN: 0377-0427

DOI: 10.1016/0377-0427(96)00006-4